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LIMITING DETECTION PERFORMANCE FOR RANDOM SIGNALS
OF UNKNOWN LOCATION, STRUCTURE, EXTENT, AND STRENGTH

INTRODUCTION

This technical report is the fourth in a series of NUWC
technical reports by this author, covering the following topics:

(a) modified generalized likelihood ratio processors,

(b) generalized likelihood ratio processors,

(c) power-law processors, and

(d) optimum processing,
respectively. Topic (a) was analyzed in [1], resulting in a
substantial compilation of receiver operating characteristics for
the breakpoint modification considered there. Topic (b) was
addressed in [2], again resulting in numerous receiver operating
characteristics that quantify the performancé of the modification
called the sum-of-M-largest processor. Topic (c) was studied in
[3], resulting in a recommendation for a device with power-law
2.5, which performed remarkably well, regardless of the (unknown)
number of bins occupied by signal and the (unknown but common)
signal level.

The overall goal of the extended investigation is to
determine classes of proéessors that perform at or near the
optimum level of performance, and which can be easily realized
and analyzed, even in these situations of scant knowledge about
the detailed signal characteristics. The reader should be
familiar with the earlier material and methods before undertaking

the current analyses and results.
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PROBLEM DEFINITION

The search space consists of N (frequency) bins, each
containing independent identically distributed noises of unit
power under hypothesis Hy, signal absent. This situation is
presumed to be accomplished by an earlier normalization
procedure. The number N is under our control and is always a
known quantity. When signal is absent, the probability density
function of each of the bin output noises is completely known.

When signal is present, hypothesis H,, the quantity M is the
actual number of bins occupied by the signal; this is frequently
an unknown parameter. The quantity L is the actual set of bins
occupied by signal, when signal is present; for example, if
M = 4, then we might have for the occupied set, L = {2,3,7,29},
meaning that bins 2,3,7,29 have signal in them. This quantity L
is always unknown in our investigation. Finally, the quantities
{S,} are the actual average signal powers in the m-th bin in
occupied set L, when signal is present; these average signal
powers are unknown. We shall presume here that all the actual
signal powers per bin are equal to a common (unknown) value $§ in

the occupied set of bins, L, and zero elsewhere.
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Observe that the actual signal power per bin, S, can also be
interpreted as the actual signal-to-noise power ratio per bin,

since the noise power per bin has been normalized at unity.

JOINT PROBABILITY DENSITY FUNCTIONS OF THE SET OF OBSERVATIONS

The joint probability density function governing the
complete observation {xn} under hypothesis Ho follows from

(1) and the statistical independence of {x 1] as

Po(Uyrees,uy) = IEI{exp(-un)} . (4)
Under hypothesis H,, the signal can land in any set of M

disjoint bins, out of the total of N search bins. This results
in a total number of possibilities K = (N|M), where the quantity
in parentheses is the binomial coefficient. Without any apriori
information about signal location, it is presumed that each set
occurs with equal probability 1/K. Thus, there are K possible
océupancy sets, each of size M, namely sets {Lk} for 1 £ k < K.
The joint probability density function governing the complete

observation {x,} is therefore

K
_ 1
py(vy.-- vy =3 [ Lel}{f“ exp(-au, )} 151.']{{“9(—““”] . (5)

where we used (1) and (2).
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SIGNALS WITH PARTIAL LOCATION INFORMATION

In this section, the total number of bins, M, occupied by a
signal (when present) and the (equal) average signal powers per
bin, S, are presumed known to the optimum processor. However,
the locations of the M occupied bins, in the total of N search
bins, are only partially known to the optimum processor. Instead
of the M occupied bins being allowed to occur anywhere in the
range of N bins (which would mean a number of possibilities equal
to binomial coefficient K = (N|M)), we presume in this section
that a lesser number of possibilities, Kp, for the occupied bin
patterns can occur. Further, each of these Kp allowed patterns
occurs with equal probability 1/Kp. In particular, each location
pattern L,, 1 < k < Kp, is a set of size M, with a structure
yet to be specified. For example, if M = 4, we might have
L, = {5,6,13,19}, meaning that, out of the total of N search

bins, the particular bins 5,6,13,19 are occupied by signal, for

pattern L7.
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K
%;? exp[y xk] z v . (10)

The likelihood ratio test indicates that we must compute all the
K_ possible allowed linear sums {Xk} in (9), weight each sum by

P

common value w, exponentiate, and sum over all the possible Kp

sets. However, Kp here may be smaller than the earlier value
= (N|M) encountered in (5), due to fewer allowed set patterns
here.

There has been no restriction on the form of the Kp sets {Lk}
that deScribe the allowed occupancy patterns for the M occupied
bins, except that each set L, is equally likely and is of size M.
If these Kp sets are carefully chosen, the difficult and lengthy
calculation prescribed in (9) - (10) for the optimum processor
can be'greatly simplified, leading to a workéble procedure
capable of simulation in a reasonable amount of time, for some

combinations of parameter values.

If we define random variables

e = exp(w xn) for 1 < n < N, (11)

the likelihood ratio test in (10) can be expressed as

K
ger

L

(12)

Va4

Each of the Kp products is of size M. This form will prove

useful in later manipulations, where we will manage to convert
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GENERALIZED LIKELIHOOD RATIO PROCESSOR

In this subsection, we presume that M, the number of occupied
signal bins (when present) is known, but that the actual average
signal strength S and the particular occupied bin locations L are

not known. Therefore, we hypothesize average signal strength

S 2 0 and occupied set Ly, where we let 1 £ k < Kp, as in the

previous subsection. The size of every set L, is M. Letting
a=1/(1+S) £ 1, the governing joint probability density

function under hypothesis Hy is, for the hypothesized S and Ly

(Wypeee,uy) = {a exp(-au_)} T [{exp(-u_ )} . (13)
Pp(9, N I:er P n neLy n

For observation {xn}, define the random variables

N
L= E X xk = E X, for 1 s_k < Kp . (14)

Then, the joint density in (13) takes on value
M
pl = pl(xll'°'lxN) = a— exP("axk) exp['(z-xk)] =
M
= exp(-I) a— exp[(l—a)xk] ‘ (15)

which depends on a and k. Holding hypothesized value k fixed,
the choice of continuous parameter a that maximizes P; in (15) is

random variable

M/X if X, > M
a = {" k k '} , (16)

1 if X, <M

11
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Using the monotonicity of functions exp and g in (19), the

generalized likelihood ratio test is therefore simply

mix xk = max(xl,...,xK ] z v . (22)
p

Physically, this test for signal presence makes a great deal
of sense. First, each variable X, in (14) is obtained by
performing as much linear summation over the observation {x_} as
possible, namely over the particular M random variables that
constitute each set Ly, thereby taking advantage of the known
limited signal structure information. Then, the largest sum, out
of the total of Kp possibilities, is compared with a threshold
for a decision about signal presence or absence. 1In this
generalized likelihood ratio test (22), there is no need to know
the actual average signal power S or the actﬁal locations L of
the occupied bins. However, M must be known and, along with the
partial signal location information {Lk}, is used to form {Xk} in
(14).

This test in (22) is not identical to the optimum likelihood
ratio test (10) or (12). However, with careful selection of Kp
and the attendant allowed sets {Lk}, the generalized likelihood
ratio test in (22) is often easy to realize in practice, and can
be simulated in a reasonable amount of time in order to
accurately ascertain its performance, whereas optimum test (12)
frequently cannot. Also, the optimum test (12) requires

knowledge of the actual average signal power per bin, S.

13
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SIGNALS WITH ZERO LOCATION INFORMATION

Here, the number of bins, M, occupied by signal and the
(equal) average signal powers per bin, S, are presumed known to

the optimum processor, but the locations of the occupied bins are

completely unknown. The signal can land in any set of M disjoint -

bins, each set occurring with equal probability 1/K, where K is

the binomial coefficient (N|M). There are now K occupancy sets

{Lk}, each of size M.

OPTIMUM PROCESSOR

Under hypothesis Hy, the governing probability density

function is

N
po(ull"'luN) = I:I{exP('un)} . (24)

Under hypothesis Hy, letting a = 1/(1 + S), we have, instead,

density

Rl=

K
Uq eee,U,.) = {a exp(-au_)} {exp(-u_)1}| - 25)

k

The likelihood ratio for observation {xn} is

Py(XseeerXy) 1 M K
LR = =z2a y_ T Texp(x,[1 - al)} =
Po(Xqreeerxy) K k=1 neL, n

15
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GENERALIZED LIKELIHOOD RATIO PROCESSOR

In the case where M is known, but average signal power S is
not, we can appeal directly to results (22) and (14) for the
generalized likelihood ratio test and‘interpret the parameters

differently. Namely, we obtain the test

max[xl,...,xK] Z v , (31)

where

. N
X, =) x, forl<k<Ks= [M] . (32)
nst =

Notice that K is now the very large integer, (N|M), required when
there is no information on the signal location.
On the other hand, if both M and S are unknown, we resort to

(23) and (14), which gives us the generalized likelihood ratio

test

max |[M g[max xk/M] Z v, (33)

M, <M<M k

1 2

but now where
X, = Y. x_ for 1 £ k < K(M) = [N] . (34)
n , M
nst

Here, K(M) = (N|M) is a function of the hypothesized number, M,

of occupied bins.

17/18
Reverse Blank
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SIGNALS WITH SLIDING LOCATION INFORMATION

Here, we again presume M and S are known, but now we restrict

the occupied bin structure to be M contiguous bins of unknown

(sliding) location. There are now only
K, =N-M+1 (35)

possible locations for the contiguous band, which are assumed

to be equally probable, apriori. Let the k-th set now be

L, = {k,k+l,...,k+M-1} for 1 < k £ K . ‘ (36)

Physically, this corresponds to a signal of known bandwidth, but

of unknown center frequency.

19
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likelihood ratio test (where S is no longer needed)

2>
E Xy ¢ Vo (41)

with X, given by the sliding sum (39) of M linear terms. ‘This
approximate likelihood ratio test (41) linearly accumulates the
data {xn} as much as possible, to yield the partial sums {xk} in
(39), but then adds up quadratic versions of these latter sums.
Implementation of test (41) is a relatively simple task, because
K. is generally a manageable number here. A worthwhile

c
alternative is

' (42)

=

IIH =

= 1O
ol
~
AV
<

but where the best choice of power y is not obvious.

It should be noted that the approximate likelihood ratio
tests (41) and (42) use a combination of all the partial sums
{Xk} in making their decision about signal presence or absence;
however, the power-law operation accents the larger partial sums
at the expense of the smaller ones. Also, tests (41) and (42)
require very little computation and can be implemented without
knowledge of average signal power level S; of course, the number
M of occupied bins must be known in order to evaluate (39).
Simulation comparisons of (40) - (42) would have to be conducted
in order to ascertain the exact degradations in performance

caused by adoption of the suboptimum processors.

21
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OPTIMUM BANDED PROCESSOR

We will now apply the general result for the likelihood ratio
test in (10) and (12) to the particular example where the allowed
Kp patterns for the M occupied bins are formed from a banded
signal structure in frequency space. 1In particular, we divide
the total search space of N bins into M disjoint bands, each
containing I = N/M bins. It is presumed that I is an integer.

We now consider a signal, structured so that one, and only
one signal, can lie in each band of I bins. This does not
correspond to the practical physical situation, where the M
signals can lie anywhere; rather, this signal model is concocted
solely for purposes of simplifying likelihood ratio test (12).

It is recognized that the performance of the corresponding
optimum banded processor (OPT-B) will be better than the optimum
processor with zero location information (OPT-Z), namely (28).
Therefore, the performance of the OPT-B will furnish a bound on
performance for any practical processor; hopefully, it will also
turn out to be a useful and tight bound.

By restricting the M signal components to lie in disﬁoint
equal-size bands, and then giving this information to the OPT-B,
some partial location information has been furnished. This
information is in addition to the values of M and S, which are
also presumed known to the OPT-B. However, to compensate as much
as possible for this additional information, we require each
individual signal component to be equally likely to occupy any of

the I = N/M bins in each band. This maximizes the confusion for

23
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optimally. Since optimum is defined in terms of maximum Py for a
specified Pe, better performance is reflected by a curve being
nearer the top of the figure. On the other hand, the bottommost
curve for the best power-law device (best v) must always lie
below the OPT-Z, because the power-law device has no knowledge of
M or S, nor is it optimum in any sense.

We will demonstrate, by means of several numerical examples,
that the top and bottom curves in figure 1 lie virtually on top
of each other. That is, the best power-law device performs so
well, and the upper bound furnished by the OPT-B is so tight,
that the region .between these two is a very narrow ribbon. 1In
fact, it will be shown that if the signal power S, for the best
power-~law device, is increased by 0.1 dB, then these two
corresponding receiver operating characteristics overlap. Thus,
we will have succeeded in pinching the unknown receiver operating
characteristic of the OPT-Z within a very tight ribbon, and will
have effectively determined its performance.

We will also have accomplished two other worthwhile goals.
First, we will have found a practical device, namely the
power-law processor, which performs virtually at the optimum
level of performance in this environment. Second, we will have
established such a tight upper bound on performance (by means of
the OPT-B) that there is no further need to search for tighter
bounds or for the.exact performance of the OPT-Z. A discrepancy
of 0.1 dB is so small that further significant effort on tighter

bounds is hard to justify.

25
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where e = exp(w x_ ), W= S5/(1 + S). Notice that the sum of

Kp = 16 products in (47) has been condensed into a single product

of sums in (48). This collapsing feature occurs as a direct
result of the banded signal structure. Inspection of the final
form in (48) reveals thét it allows for interaction of every
component e, 1 <n <4, in the first band, with every component

e 5 £n £ 8, in the second band, but no interaction within

nl
either band. This is the mathematical representation of the

physical separation of signals into disjoint bands.
This collapsing behavior of (12) holds in general for the
banded signal structure. Namely, the likelihood ratio test in

(12) can be generally expressed exactly in this special case as

el e 4+ e e eZI e o =

1+1 °°° GSN-1+41 I N

= (e1 + e + eI)(eI+1 + e + eZI)---(eN_I+1 + e + eN) = (49)

M M
= I = 1
>
=TT3_ CenI-14j * [ T3 __ exP[ﬂ me-I+j] <V (50)

m=1 j=1

where there are I terms in each of the M sums. Observe that

Kp terms, which is just the

number of terms in form (12). However, compact form (49)

expansion of (49) would yield ™

requires only the evaluation of N exponentials {en} and M-1
products, whereas form (12) requires N exponentials and Kp (M-1)
products, a number which is intolerably large when N is large.
Result (10) for the likelihood ratio test is not a useful

alternative because it requires Kp exponentials and summations.

27
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Furthermore, whereas we are unaware of any method to cut
down on the number of calculations, K, required for the OPT-Z
likelihood ratio test (28), the OPT-B likelihood ratio test (12)
can be reduced to form (49), which is very easy to simulate in a
reasonable amount of computer time.

As another example, for N = 1024, M = 4, there follows
K = 4.6E10 and Kp = 4.3E9. Now, the number of alternatives has
been reduced by a factor of 10, and the adequacy of the tightness
of the performance bound for the OPT-B becomes even more
questionable. On the other hand, there are still Kp = 4.3E9
alternatives left for the banded signal structure, which
indicates that a great deal of uncertainty still remains for
the OPT-B to consider.

Finally, for N = 1024 and M = 512, we find K = 4.5E306
and Kp = 1.3E154. Here, the number of alternatives Kp is
approximately the square root of K; that is, Kp is reduced by a

152

factor of 10 relative to K. On the other hand, there still

remains a tremendous number of alternatives for the OPT-B to

154, which may be sufficient

consider, namely on the order of 10
to confuse the OPT-B enough to yield a tight performance bound.
This question can only be resolved through numerical
investigation of the receiver operating characteristics.

(For N = M = 1024, we have K = Kp = 1, and the OPT-B and OPT-Z
processors become identical, namely the energy detector.)

All the above results hold for the present case of equal

signal powers S per bin. However, when the signal powers per bin

29
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RECEIVER OPERATING CHARACTERISTICS FOR OPTIMUM BANDED PROCESSOR

We now determine the performance of the optimum banded
processor, as characterized by (49) or (50) in general, for any
N and M (with N/M integer). The weight w in likelihood ratio
test (50) is given by w = S/(1 + S), which depends on the
particular signal power case under investigation. This means
that, in simulating (50), the false alarm probability P (as well
as the detection probability Py) must be rerun for each different
value of signal power S of interest. (This is distinct from the
power-law processor, for example, where one curve of Pf could be
plotted versus numerous Pd curves; also, Pf was available
analytically for some power-law devices, which circumvented the
need for simulating P, at all in those cases.)

This additional simulation expense for the optimum banded
processor leads us to adopt the following procedure. We first
refer to the performance of the best power-law device [3] to
determine what signal power §p was necessary there in order to
operate in the neighborhood of the low-quality operating point

_ -3

and Py = 0.5. Then, we choose a pair of signal powers
that bracket §p; that is, we take §, < §p < 5, and we simulate
(50) for both S, as well as §b' This gives us a pair of receiver
operating characteristics for the optimum banded processor,
namely two curves of P4 versus Pg, from which we can interpolate
in order to estimate the signal power needed to operate at the
low-quality operating point. This entire procedure was repeated

-6

for the high-quality operating point Pe = 10 and Py = 0.9.

31
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A table of the signal powers S in decibels required for the

optimum banded processor has been extracted from these figures;

it is presented under the column labeled OPT-B in table 1 below.

Also listed are the corresponding signal powers required for the

best power-law processor, under the heading BEST PLP; the last

column gives the actual best value of power v to use.

latter values come from [3; page 28, table 1].

The

These

largest

discrepancy in table 1 between OPT-B and BEST PLP is 0.17 dB;

however, the coarseness of the search that we conducted in v

values (namely 1, 2, 2.5, 3, ») leads us to believe that the

largest discrepancy would be closer to 0.1 dB if intermediate

values of v were investigated.

Thus, we claim that the best

power-law processor is within approximately 0.1 dB of the

absolute limit of performance in this environment.

Table 1.

=

o BN =

16
32
64
128
256
512
1024

Required S(dB) for N =

OPT-B

12.75
10.03
7.88
6.04
4.35
2.62
0.71
-1.54
-4.16
-7.03
-10.01

1024, P

BEST PLP

12.77
10.11
8.05
6.2
4.4
2.7
0.75
-1.4
-4.0
~-7.00
-10.01

33
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The largest discrepancy in table 2 between OPT—B‘and BEST PLP
is 0.3 dB; however, the coarseness of the search in v and the
difficulty of simulating extremely large trial runs for small
probabilities in the 1076 range makes it difficult to accurately
estimate the difference in performance between the optimum banded
processor and the best power-law processor. A reasonable
estimate appears to be about 0.2 dB.

The difficulty of obtaining accurate receiver operating
characteristics for very small false alarm probability values i§
due to the extremely large number of trials required. As an
alternative, an analytical approach for determining the false
alarm probability for the optimum banded processor is outlined in
- appendix A. However, it requires two very accurate numerical
integrations, coupled with two fast Fourier transforms of rather
large size. This procedure was not employed here.

In figure 22, the total signal power, M S in decibels,
required to achieve the low-quality operating point, is plotted
versus M for the power-law processors v =1, 2, 2.5, 3, «, when
N = 1024. This result comes from [3; page 29]. The OPT-B
absolute bound in table 1 above is superposed as black dots on
this figure. As already anticipated, these results indicate that
there is always some power-law processor that performs very close
to optimum.

A similar result for the high-quality operating point is
given in figure 23; the source of these results is [3; page 30]

and the OPT-B absolute bound in table 2 above. The danger of
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COMPARISON WITH TWO OTHER PROCESSORS
MODIFIED GENERALIZED LIKELIHOOD RATIO PROCESSOR

The modified generalized likelihood ratio processor for
search size N = 1024 was investigated in [1], resulting in 36
receiver operating characteristics for M = 8,16,32,64,128,256,

and breakpoints x_ =1,3,5,7,9,11; see [1l; figures 8 - 43].

o
The remaining 36 receiver operating characteristics, for
M=1,2,3,4,512,1024 and the same 6 breakpoint values, are
presented here in appendix B. A complete set of characteristics
for x, = 6 and M = 1,2,3,4,8,16,32,64,128,256,512,1024 has also
been added. All these results were obtained by simulation; the
number of trials utilized is indicated on each figure.

From this totality of results, the signal power S required to
achieve specified false alarm and detection probabilities can be
extracted. These results are presented in figure 24 for the
low-quality operating point. They indicate that the best single

compromise breakpoint x_ for the modified generalized likelihood

o
ratio processor, in order to cover all M values from 1 to 1024,
is x, = 5.6; the maximum losses at M = 1 and 1024 are 3.7 dB
relative to the OPT-B. This is considerably poorer than the
power-law processor with power v = 2.4, for which the maximum

loss is only 1.2 dB, regardless of the value of M; see figure 22.
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LINEAR DEVICE WITH DEAD ZONE

The power-law processor was derived as an approximation to
the optimum processor, while the modified generalized likelihood
ratio processor was the result of an ad hoc change incorporated
to circumvent weak signal estimates. These approaches are
adopted, of necessity, in order to obtain realistic practical
processors. However, they leave open the possibility of yet
other suboptimum approaches that may yield equally good practical
techniques for detection of weak signals of unknown character.

In this subsection, we consider a processor that comes about
as a modification to the likelihood ratio test. The derivation
of this processor (as well as its performance in terms of Pe and
Pd).is given in appendix C. The end result is the following

modified likelihood ratio test, (C-7), for signal presence:

N >
2 _h(x)) v, |hx) =

n=1

{x -b for x 2 Db
0 for x < Db

}, b20. (53)

The component device h(x) is linear for x > b, but has zero
response for x < b. This device completely suppresses weak data
values X,/ but allows the stronger data values to contribute
linearly. Selection of the best choice of breakpoint b requires
detailed computation of P, and P, for numerous values of M and S.
A closed form for false alarm probability Pe is given in
(C-13). It was used to generate the series of curves for Pe

versus threshold v in figure 25. On the other hand, for the
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signal present hypothesis Hi, a closed form for the
characteristic function of the decision variable is given by
(C-14). This latter result was not used here for determining Pd;
rather, Pd was found by simulation, since its most useful range
of values is easily estimated.

A series of receiver operating characteristics were
determined for procéssor (53), but are not presented here, for
the sake of brevity. Tables of the signal powers per bin, §,
required for this modified likelihood ratio (MLR) processor (53)
were extracted from these figures for both the low-quality and
high-quality operating points; they are presented under the third
column labeled MLR in tables 3 and 4 below. The last column
gives the corresponding best value of breakpoint b to use. Also
listed are the corresponding signal powers required for the
OPT-B. The largest discrepancies in tables 3 and 4 between the
OPT-B and MLR processors are approximately 0.35 dB, when the best
breakpoint b is used.

This modified likelihood ratio processor needs to know signal
size M, in order to make the best selection of breakpoint b; this
unrealistic condition is consistent with all the processors
encountered. However, we are unable to make a decision on the
best single compromise breakpdint b to use for this MLR
processor, because the large number of receiver operating
characteristics that would be required to cover all the potential
b and M values were not run. The analytic results in appendix C

would be useful in this regard.
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SUMMARY

The limiting detection performance for random signals of
unknown location, structure, extent, and strength has been very
accurately ascertained through use of a "super" optimum processor
called the optimum banded processor. This processor presumes
knowledge of the number M of occupied bins, the signal power per
bin S, and some partial knowledge about the locations of the
occupied bins. This unrealistic set of assumptions leads to an
upper bound on attainable detectability performance of any
practical processor; however, the bound turns out to be so tight
that searching for further improvement can yield only negligible
gains, of the order of 0.1 dB.

The tightness of the upper bound is established by comparing
it with the performance of the power-law processor using its best
power v. It is found that there is always some power-law
processor (some value of v) that performs within 0.1 dB of the
absolute optimum level. Strictly, this conclusion is drawn only
for the numerical example of N = 1024, Py = 10'3, Py = 0.5. This
achievement for the power-law processor is striking, in light of
the fact that it knows and uses nothing about size M, signal
power S, nor anything about the signal locations. However, when
it is necessary to employ a single compromise value of power v to
operate in the entire range of possibilities from M = 1 to

M = N = 1024, the minimax loss is 1.2 dB, occurring for power

selection v = 2.4.
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APPENDIX A. FALSE ALARM PROBABILITY FOR OPTIMUM BANDED PROCESSOR

We are interested in obtaining the false alarm probability

for the processor described in (49) and (50), where

- = = 1. 1 =N -
e = exp(w xn) ¢ W T TF 5 w=1+ w =2 + 5 I = M (A-1)
We define the auxiliary random variables

I
Sy = §=1 emI—I+j ’ Yo = ln(sm) for 1 <m < M, (A-2)
z=y) + 200ty - (A-3)

The random variable s, comes directly from (50), while z is the
logarithm of the left-hand side of (49). Since random variable
X, is never negative here, we always have en-z 1, s, 2 I,
Y 2 In(I), z 2 M In(I). Also, w 2 2.

The fundamental calculation is the characteristic function of

e which for ¥ > 0, can be developed under HO as

fe(E) = exp[i{e;j = exp[i{ exp(gxn)] =
= I du exp(- u + if exp(wu)) = (w-1) J dt t™ exp(ift) = (A-4)
0 1
-jc . )
= (0-1)(-i5)*"! [ dy ¥ exp(-y) = (0-1)(-i8)*"" [ dy ¥ exp(-y)
-it -ig
= (w-1) (-i5)®7! (p(1-w) - y(1-w,-i8)] =

57




TR 10839

If fe(E) is evaluated via (A-5) and (A-6) at increment AEl,
then fS(E) becomes available at the same increment. Use of these
samples in (A-7) yields an approximation ﬁs(u) with period
2n/AEl, which must be large enough to encompass the full extent
of Pg(u). If an FFT (fast Fourier transform) of size Ny is used
to carry out (A-7), the increment for the argument of ﬁs(u) is
Au1 = 2n/(N1 AEl); since Au1 must be small, this will require a
large value for N,.

If fy({) in (A-8) is evaluated at increment A{z, then fz(E)
is available at the same increment. When these samples are used
in the FFT required to determine the density p,(u) of z, the
approximation ﬁz(u) has period 2n/A22, which must be large. 1If
this FFT is taken at size N2' the increment for the argument of
ﬁz(u) is bu, = 2n/(N2 AEZ), which must be small enough to track
the variations.

The fundamental parameters in this investigation are N, M,
and S, where I = N/M must be an integer. Two different numerical
integrations are needed to carry out (A-6) and (A-8). Also, two
FFTs are required: one for ﬁs(u) from fs(E) in (A-7) and the
other for ﬁz(u) from fz(E). This intensive numerical procedure

will require large values for FFT sizes N, and N,.
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APPENDIX B. RECEIVER OPERATING CHARACTERISTICS

FOR MODIFIED GENERALIZED LIKELIHOOD RATIO PROCESSOR

The modified generalized likelihood ratio (MGLR) processor

for search size N 1024 was investigated in [1], resulting in 36
receiver operating characteristics for M = 8,16,32,64,128,256,
and breakpoints X, = 1,3,5,7,9,11. The remaining 36 receiver
operating characteristics at N = 1024, for M = 1,2,3,4,512,1024
and the same 6 breakpoint values, are presented here. Also, a

complete set of characteristics for X, = 6 and M = 1,2,3,4,8,16,

32,64,128,256,512,1024 has been added. Finally, a couple of

isolated examples for X, = 13 and Xq 15 have been run.

All these results were obtained by simulation; the number of
trials utilized is indicated on each figure. A couple of check
cases were conducted for comparison with the analytical results

in [1). They are x_ = 3, M = 256 in figure B-11, which verifies

o
[1; figure 39], and X, = 7, M = 8 in fiqure B-36, which verifies

[1; figure 11]. Labeling on all plots is identical to figure B-1.

A short table of losses relative to the OPT-B, for N = 1024,

Pf = 10'3, Pd = 0.5, is presented below. These were extracted

from the accompanying receiver operating characteristics.

X, dB loss at M = 1 dB loss at M = 1024
1 5.5 0.5
3 5.4 1.3
5 4.2 3.1
6 3.4 4.1
7 2.7 5.0
9 1.2 >7
11 0 -
13 0 -
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APPENDIX C. DERIVATION OF MODIFIED LIKELIHOOD RATIO TEST

For known (possibly unequal) signal powers [§n}, the

likelihood ratio may be shown to take the form

-n

N S
S —2B __x 2. (C-2)

However, if the signal powers are unknown, we replace S, by

hypothesized value S, obtaining the modified likelihood ratio

N : S _
MLR = | | {—1—}_—?— exp[T—;E—S— xn]} ‘ Sn 20 . (C-3)
n n

This quantity is maximized by the choices (random variables)

0 forx <1

x, - 1 for X, 21
S = for 1 < n < N. (C-4)
N .

When these values are substituted into (C-3), there follows the

generalized likelihood ratio test

g(x) L v, (C-5)

=

n=1

where g(x) is given by (19). This is a familiar result [1].
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Under hypothesis HO’ the characteristic function of z is
95y = £0,5 N o BV _ _
L&) = y(E) = |\Bp *1T—-3g) + B =exp(-b), B; =1-B. (C-10)

Upon expansion, there follows

N
0 _ N N-n _.n 1
o = (T e

The corresponding probability density function of z under Hy is

N n-1
p2(u) = BY s(u) + ¥ __ [g] pi-n gn U (n_§§?i—gl for u 2 0. (C-12)

Finally, the exceedance distribution function of z under Ho, for

threshold v > 0, is

. .
Pr(z > v) =9 f [ﬂ] BT‘“ B" Q (v) , (C-13)
n=

where functions {Qn(v)} are defined in [7; page 12,
set L = 0 in (23)].

Expansion (C-13) is a very useful one for evaluation of the
exceedance distribution function, because it is a sum of positive
terms, of which the components are quickly and easily evaluated
by recursions. Thus, the false alarm probability P, can be
quickly and accurately determined. This procedure was utilized

for the determination of figure 25.
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APPENDIX D. PROCESSOR FORMS FOR VARIABLES WITH GAMMA DENSITY

In this appendix, we presume that all the bins are occupied
when signal is present; that is, we have here, M = N. Therefore,
independent identically distributed random variables {xn},

1 < n < N, have common probability density function

at yH-1 exp(-au)
p(u) = for u > 0 , (D-1)

T(y)

regardless of the value of n, where

;i p>0. (D-2)

{21 < 1 for hypothesis Hl}

ag =1 for hypothesis H,

The characteristic function and cumulants of x are

£.(8) = L ’ X (k) = (k-1)! —ﬁ for k 2 1, (D-3)
(1 - i&/a)¥ a
respectively. Thus, xx(l) = p/a, and, in particular, the mean of

X, is p (not 1) for hypothesis Hy. All the previous results in
[1; 2; 3] pertain to the special case of parameter y = 1 in
(D-1). (If p = I/2, I integer, then random variable x, in (D-1)
and (D-3) is a scaled chi-squared variate with I degrees of

freedom.)
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GENERALIZED LIKELIHOOD RATIO PROCESSOR

The situation is identical to (D-1) and (D-2), except that
strength- parameter a, is unknown. We hypothesize value ajs where
a; < 1, yielding for the joint probability density function of

observation {x,} under hypothesis H,

g u-1 -
b = b (x ) = N ay x, exp( alxn) _
- ,0.0'
1 1'71 N £={ r'(u)
ag ; -1
= (o) 11 exp(-alz), - (D-6)
where random variables
N N
0= | | X s L = E SO (D-7)
n=1 n=1 ‘

In order to maximize P, in (D-6), we take a derivative with

respect to ayy obtaining

dp u-1 _
1.1 ak™ 1 exp(-a;Z) (uN - a I) . (D-8)

da1 P(p)N

The best choice of a; is therefore the random variable

E% if £ > uN

1 if ¢ < uN

(D-9)

because a; ¢ 1 always. The resulting maximum of Py in (D-6) is
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because useful values of false alarm probability Pe will require
threshold values v in (D-14) larger than uyN, in practice. 1In

fact, the mean of I is exactly uN under hypothesis Hy; therefore,
v would have to be larger than the mean of I to realize small Pf.

The left-hand side of the processor in (D-14) does not need
or utilize u for its realization; however, achievement of a
specified Pe would require knowledge of yu in order to set the
correct threshold value for v.

This generalized likelihood ratio test is identical to the
optimum processor test in (D-5). This result could have been
anticipated, because the likelihood ratio test (D-5) was
independent of p and a meaning that a; was never needed to
realize the optimum processor. Again, the situation here is that
the signal occupies all bins with equal powers when it is
present. The following subsection treats the case of unknown and

unequal signal powers per bin.
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(H/e)“

T(h) x, for n e L , (D-18)

and xﬁ-l exp(—xn)/r(y) otherwise. Therefore,

-1
- (u/e)* X, = exp(-x,) _
max py ‘I:I[P(#) x_ I;I T(p)

_ (u/e)H exp(x_)) N_(xF71 exp(-x )
= T . (D-19)
nekL xﬁ n=1

Meanwhile, the joint probability density function of observation

{x,} under hypothesis Hy is, from (D-15) and (D-7),

H-1 -
Py = i exp(-I) . | (D-20)

r(m”

The modified generalized likelihood ratio follows from (D-19)

and (D-20) as (random variable)

max p (p/e)“ exp(x_) x b4
MGLR = —1 ] L [ Texp p[—g -1 - ln[—g] ] =
Po nekL xﬁ neL H H
N
= exp(u X_ a(xy/m)] o (D-21)
n=1

where nonlinearity g is independent of p and is defined by

(D-22)

x -1~ 1ln(x) for x >Db
oo - | .

0 forx £ b
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